
Chapter 14

Creating and Using Classes
In This Chapter

▶ Defining the characteristics of a class

▶ Specifying the class components

▶ Creating your own class

▶ Working with the class in an application

▶ Working with subclasses

Y
ou’ve already worked with a number of classes in previous chapters.
Many of the examples are easy to construct and use because they

depend on the Python classes. Even though classes are briefly mentioned in
previous chapters, those chapters largely ignore them simply because dis-
cussing them wasn’t immediately important.

Classes make working with Python code more convenient by helping to
make your applications easy to read, understand, and use. You use classes to
create containers for your code and data, so they stay together in one piece.
Outsiders see your class as a black box — data goes in and results come out.

 At some point, you need to start constructing classes of your own if you want
to avoid the dangers of the spaghetti code that is found in older applications.
Spaghetti code is much as the name implies — various lines of procedures are
interwoven and spread out in such a way that it’s hard to figure out where one
piece of spaghetti begins and another ends. Trying to maintain spaghetti code
is nearly impossible, and some organizations have thrown out applications
because no one could figure them out.

Besides helping you understand classes as a packaging method that avoids
spaghetti code, this chapter helps you create and use your own classes for
the first time. You gain insights into how Python classes work toward making
your applications convenient to work with. This is an introductory sort of
chapter, though, and you won’t become so involved in classes that your head
begins to spin around on its own. This chapter is about making class develop-
ment simple and manageable.

268 Part III: Performing Common Tasks

Understanding the Class
as a Packaging Method

A class is essentially a method for packaging code. The idea is to simplify
code reuse, make applications more reliable, and reduce the potential for
security breaches. Well-designed classes are black boxes that accept certain
inputs and provide specific outputs based on those inputs. In short, a class
shouldn’t create any surprises for anyone and should have known (quantifi-
able) behaviors. How the class accomplishes its work is unimportant, and
hiding the details of its inner workings is essential to good coding practice.

Before you move onto actual class theory, you need to know a few terms that
are specific to classes. The following list defines terms that you need to know
in order to use the material that follows later in the chapter. These terms are
specific to Python. (Other languages may use different terms for the same
techniques or define terms that Python uses in different ways.)

 ✓ Class: Defines a blueprint for creating an object. Think of a builder who
wants to create a building of some type. The builder uses a blueprint to
ensure that the building will meet the required specifications. Likewise,
Python uses classes as a blueprint for creating new objects.

 ✓ Class variable: Provides a storage location used by all methods in an
instance of the class. A class variable is defined within the class proper
but outside of any of the class methods. Class variables aren’t used very
often because they’re a potential security risk — every method of the
class has access to the same information. In addition to being a security
risk, class variables are also visible as part of the class rather than a par-
ticular instance of a class, so they pose the potential problem of class
contamination.

 ✓ Data member: Defines either a class variable or an instance variable
used to hold data associated with a class and its objects.

 ✓ Function overloading: Creates more than one version of a function,
which results in different behaviors. The essential task of the function
may be the same, but the inputs are different and potentially the outputs
as well. Function overloading is used to provide flexibility so that a func-
tion can work with applications in various ways.

 ✓ Inheritance: Uses a parent class to create child classes that have the
same characteristics. The child classes usually have extended function-
ality or provide more specific behaviors than the parent class does.

 ✓ Instance: Defines an object created from the specification provided by a
class. Python can create as many instances of a class to perform the
work required by an application. Each instance is unique.

269 Chapter 14: Creating and Using Classes

 ✓ Instance variable: Provides a storage location used by a single method
of an instance of a class. The variable is defined within a method.
Instance variables are considered safer than class variables because
only one method of the class can access them. Data is passed between
methods using arguments, which allows for controlled checks of incom-
ing data and better control over data management.

 ✓ Instantiation: Performs the act of creating an instance of a class. The
resulting object is a unique class instance.

 ✓ Method: Defines the term used for functions that are part of a class.
Even though function and method essentially define the same element,
method is considered more specific because only classes can have
methods.

 ✓ Object: Defines a unique instance of a class. The object contains all the
methods and properties of the original class. However, the data for each
object differs. The storage locations are unique, even if the data is the
same.

 ✓ Operator overloading: Creates more than one version of a function
that is associated with an operator such as: +, -, /, or *, which results
in different behaviors. The essential task of the operator may be the
same, but the way in which the operator interacts with the data differs.
Operator overloading is used to provide flexibility so that an operator
can work with applications in various ways.

Considering the Parts of a Class
A class has a specific construction. Each part of a class performs a particular
task that gives the class useful characteristics. Of course, the class begins
with a container that is used to hold the entire class together, so that’s the
part that the first section that follows discusses. The remaining sections
describe the other parts of a class and help you understand how they con-
tribute to the class as a whole.

Creating the class definition
A class need not be particularly complex. In fact, you can create just the con-
tainer and one class element and call it a class. Of course, the resulting class
won’t do much, but you can instantiate it (tell Python to build an object using
your class as a blueprint) and work with it as you would any other class. The
following steps help you understand the basics behind a class by creating the
simplest class possible.

270 Part III: Performing Common Tasks

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 MyVar = 0

 The first line defines the class container, which consists of the keyword
class and the class name, which is MyClass. Every class you create
must begin precisely this way. You must always include class followed
by the class name.

 The second line is the class suite. All the elements that comprise the
class are called the class suite. In this case, you see a class variable
named MyVar, which is set to a value of 0. Every instance of the class
will have the same variable and start at the same value.

 3. Type MyInstance = MyClass() and press Enter.

 You have just created an instance of MyClass named MyInstance.
Of course, you’ll want to verify that you really have created such an
instance. Step 4 accomplishes that task.

 4. Type MyInstance.MyVar and press Enter.

 The output of 0, as shown in Figure 14-1, demonstrates that MyInstance
does indeed have a class variable named MyVar.

Figure 14-1:

The

instance

contains

the required

variable.

 5. Type MyInstance.__class__ and press Enter.

 Python displays the class used to create this instance, as shown in
Figure 14-2. The output tells you that this class is part of the __main__
module, which means that you typed it directly into the shell.

271 Chapter 14: Creating and Using Classes

 6. Retain this window and class for the next section.

Figure 14-2:

The class

name is also

correct, so

you know

that this

instance

is cre-

ated using

MyClass.

Considering the built-in
class attributes
When you create a class, you can easily think that all you get is the class.
However, Python adds built-in functionality to your class. For example, in the
preceding section, you type __class__ and press Enter. The __class__
attribute is built in; you didn’t create it. It helps to know that Python provides
this functionality so that you don’t have to add it. The functionality is needed
often enough that every class should have it, so Python supplies it. The fol-
lowing steps help you work with the built-in class attributes.

 1. Use the Python Shell window that you open in the preceding section.

 If you haven’t followed the steps in the preceding section, “Creating the
class definition,” please do so now.

 2. Type dir(MyInstance) and press Enter.

 A list of attributes appears, as shown in Figure 14-3. These attributes
provide specific functionality for your class. They’re also common to
every other class you create, so you can count on always having this
functionality in the classes you create.

 3. Type help(‘__class__’) and press Enter.

 Python displays information on the __class__ attribute, as shown in
Figure 14-4. You can use the same technique for learning more about any
attribute that Python adds to your class.

 4. Close the Python Shell window.

272 Part III: Performing Common Tasks

Figure 14-3:

Use the

dir()

function to

determine

which built-

in attributes

are present.

Figure 14-4:

Python

provides

help for

each of the

attributes it

adds to your

class.

273 Chapter 14: Creating and Using Classes

Working with methods
Methods are simply another kind of function that reside in classes. You create
and work with methods in precisely the same way that you do functions,
except that methods are always associated with a class (you don’t see free-
standing methods as you do functions). You can create two kinds of methods:
those associated with the class itself and those associated with an instance
of a class. It’s important to differentiate between the two. The following sec-
tions provide the details needed to work with both.

Creating class methods
A class method is one that you execute directly from the class without cre-
ating an instance of the class. Sometimes you need to create methods that
execute from the class, such as the functions you used with the str class
in order to modify strings. As an example, the MultipleException4.py
example in Chapter 9 uses the str.upper() function. The following steps
demonstrate how to create and use a class method.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 def SayHello():
 print("Hello there!")

 The example class contains a single defined attribute, SayHello().
This method doesn’t accept any arguments and doesn’t return any
values. It simply prints a message as output. However, the method works
just fine for demonstration purposes.

 3. Type MyClass.SayHello() and press Enter.

 The example outputs the expected string, as shown in Figure 14-5.
Notice that you didn’t need to create an instance of the class — the
method is available immediately for use.

 4. Close the Python Shell window.

274 Part III: Performing Common Tasks

Figure 14-5:

The class

method

outputs

a simple

message.

 A class method can work only with class data. It doesn’t know about any data
associated with an instance of the class. You can pass it data as an argument,
and the method can return information as needed, but it can’t access the
instance data. As a consequence, you need to exercise care when creating
class methods to ensure that they’re essentially self-contained.

Creating instance methods
An instance method is one that is part of the individual instances. You use
instance methods to manipulate the data that the class manages. As a conse-
quence, you can’t use instance methods until you instantiate an object from
the class.

 All instance methods accept a single argument as a minimum, self. The
self argument points at the particular instance that the application is using
to manipulate data. Without the self argument, the method wouldn’t know
which instance data to use. However, self isn’t considered an accessible
argument — the value for self is supplied by Python, and you can’t change it
as part of calling the method.

The following steps demonstrate how to create and use instance methods in
Python.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 def SayHello(self):
 print("Hello there!")

275 Chapter 14: Creating and Using Classes

 The example class contains a single defined attribute, SayHello().
This method doesn’t accept any special arguments and doesn’t return
any values. It simply prints a message as output. However, the method
works just fine for demonstration purposes.

 3. Type MyInstance = MyClass() and press Enter.

 Python creates an instance of MyClass named MyInstance.

 4. Type MyInstance.SayHello() and press Enter.

 You see the message shown in Figure 14-6.

Figure 14-6:

The

instance

message

is called

as part of

an object

and outputs

this simple

message.

 5. Close the Python Shell window.

Working with constructors
A constructor is a special kind of method that Python calls when it instanti-
ates an object using the definitions found in your class. Python relies on the
constructor to perform tasks such as initializing (assigning values to) any
instance variables that the object will need when it starts. Constructors can
also verify that there are enough resources for the object and perform any
other start-up task you can think of.

 The name of a constructor is always the same, __init__(). The constructor
can accept arguments when necessary to create the object. When you create a
class without a constructor, Python automatically creates a default construc-
tor for you that doesn’t do anything. Every class must have a constructor,
even if it simply relies on the default constructor. The following steps demon-
strate how to create a constructor:

276 Part III: Performing Common Tasks

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 Greeting = ""

 def __init__(self, Name="there"):
 self.Greeting = Name + "!"

 def SayHello(self):
 print("Hello {0}".format(self.Greeting))

 This example provides your first example of function overloading. In
this case, there are two versions of __init__(). The first doesn’t
require any special input because it uses the default value for the Name
of "there". The second requires a name as an input. It sets Greeting
to the value of this name, plus an exclamation mark. The SayHello()
method is essentially the same as previous examples in this chapter.

 Python doesn’t support true function overloading. Many strict adher-
ents to strict Object-Oriented Programming (OOP) principles consider
default values to be something different from function overloading.
However, the use of default values obtains the same result, and it’s the
only option that Python offers. In true function overloading, you see
multiple copies of the same function, each of which could process the
input differently.

 3. Type MyInstance = MyClass() and press Enter.

 Python creates an instance of MyClass named MyInstance.

 4. Type MyInstance.SayHello() and press Enter.

 You see the message shown in Figure 14-7. Notice that this message pro-
vides the default, generic greeting.

 5. Type MyInstance = MyClass(“Amy”) and press Enter.

 Python creates an instance of MyClass named MyInstance.

 6. Type MyInstance.SayHello() and press Enter.

 You see the message shown in Figure 14-8. Notice that this message pro-
vides a specific greeting.

 7. Close the Python Shell window.

277 Chapter 14: Creating and Using Classes

Figure 14-7:

The first ver-

sion of the

constructor

provides

a default

value for the

name.

Figure 14-8:

Supplying

the con-

structor

with a name

provides a

customized

output.

Working with variables
As mentioned earlier in the book, variables are storage containers that hold
data. When working with classes, you need to consider how the data is
stored and managed. A class can include both class variables and instance
variables. The class variables are defined as part of the class itself, while
instance variables are defined as part of methods. The following sections
show how to use both variable types.

278 Part III: Performing Common Tasks

Creating class variables
Class variables provide global access to data that your class manipulates in
some way. In most cases, you initialize global variables using the constructor
to ensure that they contain a known good value. The following steps demon-
strate how class variables work.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 Greeting = ""

 def SayHello(self):
 print("Hello {0}".format(self.Greeting))

 This is a version of the code found in the “Working with constructors”
section of the chapter, but this version doesn’t include the constructor.
Normally you do include a constructor to ensure that the class variable
is initialized properly. However, this series of steps shows how class
variables can go wrong.

 3. Type MyClass.Greeting = “Zelda” and press Enter.

 This statement sets the value of Greeting to something other than the
value that you used when you created the class. Of course, anyone could
make this change. The big question is whether the change will take.

 4. Type MyClass.Greeting and press Enter.

 You see that the value of Greeting has changed, as shown in Figure 14-9.

 5. Type MyInstance = MyClass() and press Enter.

 Python creates an instance of MyClass named MyInstance.

Figure 14-9:

You can

change the

value of

Greeting.

279 Chapter 14: Creating and Using Classes

 6. Type MyInstance.SayHello() and press Enter.

 You see the message shown in Figure 14-10. The change that you made
to Greeting has carried over to the instance of the class. It’s true
that the use of a class variable hasn’t really caused a problem in this
example, but you can imagine what would happen in a real application if
someone wanted to cause problems.

 This is just a simple example of how class variables can go wrong. The
two concepts you should take away from this example are as follows:

	 •	Avoid	class	variables	when	you	can	because	they’re	inherently	unsafe.

	 •	Always	initialize	class	variables	to	a	known	good	value	in	the	con-
structor code.

 7. Close the Python Shell window.

Figure 14-10:

The

change to

Greeting

carries

over to the

instance of

the class.

Creating instance variables
Instance variables are always defined as part of a method. The input argu-
ments to a method are considered instance variables because they exist
only when the method exists. Using instance variables is usually safer than
using class variables because it’s easier to maintain control over them and
to ensure that the caller is providing the correct input. The following steps
show an example of using instance variables.

280 Part III: Performing Common Tasks

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

class MyClass:
 def DoAdd(self, Value1=0, Value2=0):
 Sum = Value1 + Value2
 print("The sum of {0} plus {1} is {2}."
 .format(Value1, Value2, Sum))

 In this case, you have three instance variables. The input arguments,
Value1 and Value2, have default values of 0, so DoAdd() can’t fail
simply because the user forgot to provide values. Of course, the user
could always supply something other than numbers, so you should
provide the appropriate checks as part of your code. The third instance
variable is Sum, which is equal to Value1 + Value2. The code simply
adds the two numbers together and displays the result.

 3. Type MyInstance = MyClass() and press Enter.

 Python creates an instance of MyClass named MyInstance.

 4. Type MyInstance.DoAdd(1, 4) and press Enter.

 You see the message shown in Figure 14-11. In this case, you see the sum
of adding 1 and 4.

Figure 14-11:

The output

is simply the

sum of two

numbers.

 5. Close the Python Shell window.

281 Chapter 14: Creating and Using Classes

Using methods with variable
argument lists
Sometimes you create methods that can take a variable number of argu-
ments. Handling this sort of situation is something Python does well. Here are
the two kinds of variable arguments that you can create:

 ✓ *args: Provides a list of unnamed arguments.

 ✓ **kwargs: Provides a list of named arguments.

 The actual names of the arguments don’t matter, but Python developers
use *args and **kwargs as a convention so that other Python developers
know that they’re a variable list of arguments. Notice that the first variable
argument has just one asterisk (*) associated with it, which means the argu-
ments are unnamed. The second variable has two asterisks, which means
that the arguments are named. The following steps demonstrate how to use
both approaches to writing an application. This example also appears with
the downloadable source code as VariableArgs.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

class MyClass:
 def PrintList1(*args):
 for Count, Item in enumerate(args):
 print("{0}. {1}".format(Count, Item))

 def PrintList2(**kwargs):
 for Name, Value in kwargs.items():
 print("{0} likes {1}".format(Name, Value))

MyClass.PrintList1("Red", "Blue", "Green")
MyClass.PrintList2(George="Red", Sue="Blue",
 Zarah="Green")

 For the purposes of this example, you’re seeing the arguments imple-
mented as part of a class method. However, you can use them just as
easily with an instance method.

 Look carefully at PrintList1() and you see a new method of using
a for loop to iterate through a list. In this case, the enumerate()
function outputs both a count (the loop count) and the string that was
passed to the function.

282 Part III: Performing Common Tasks

 The PrintList2() function accepts a dictionary input. Just as with
PrintList1(), this list can be any length. However, you must process
the items() found in the dictionary to obtain the individual values.

 3. Choose Run➪Run Module.

 You see the output shown in Figure 14-12. The individual lists can be of
any length. In fact, in this situation, playing with the code to see what
you can do with it is a good idea. For example, try mixing numbers and
strings with the first list to see what happens. Try adding Boolean values
as well. The point is that using this technique makes your methods
incredibly flexible if all you want is a list of values as input.

Figure 14-12:

The code

can process

any number

of entries in

the list.

Overloading operators
In some situations, you want to be able to do something special as the result
of using a standard operator such as add (+). In fact, sometimes Python
doesn’t provide a default behavior for operators because it has no default
to implement. No matter what the reason might be, overloading operators
makes it possible to assign new functionality to existing operators so that
they do what you want, rather than what Python intended. The following
steps demonstrate how to overload an operator and use it as part of an appli-
cation. This example also appears with the downloadable source code as
OverloadOperator.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

283 Chapter 14: Creating and Using Classes

 2. Type the following code into the window — pressing Enter after
each line:

class MyClass:
 def __init__(self, *args):
 self.Input = args

 def __add__(self, Other):
 Output = MyClass()
 Output.Input = self.Input + Other.Input
 return Output

 def __str__(self):
 Output = ""
 for Item in self.Input:
 Output += Item
 Output += " "
 return Output

Value1 = MyClass("Red", "Green", "Blue")
Value2 = MyClass("Yellow", "Purple", "Cyan")
Value3 = Value1 + Value2

print("{0} + {1} = {2}"
 .format(Value1, Value2, Value3))

 The example demonstrates a few different techniques. The construc-
tor, __init__(), demonstrates a method for creating an instance vari-
able attached to the self object. You can use this approach to create as
many variables as needed to support the instance.

 When you create your own classes, no + operator is defined until you
define one, in most cases. The only exception is when you inherit
from an existing class that already has the + operator defined (see the
“Extending Classes to Make New Classes” section, later in this chapter,
for details). In order to add two MyClass entries together, you must
define the __add__() method, which equates to the + operator.

 The code used for the __add__() method may look a little odd, too, but
you need to think about it one line at a time. The code begins by creat-
ing a new object, Output, from MyClass. Nothing is added to Output
at this point — it’s a blank object. The two objects that you want to add,
self.Input and Other.Input, are actually tuples. (See “Working with
Tuples,” in Chapter 13, for more details about tuples.) The code places
the sum of these two objects into Output.Input. The __add__()
method then returns the new combined object to the caller.

284 Part III: Performing Common Tasks

 Of course, you may want to know why you can’t simply add the two
inputs together as you would a number. The answer is that you’d end up
with a tuple as an output, rather than a MyClass as an output. The type
of the output would be changed, and that would also change any use of
the resulting object.

 To print MyClass properly, you also need to define a __str__() method.
This method converts a MyClass object into a string. In this case, the
output is a space-delimited string (in which each of the items in the string
is separated from the other items by a space) containing each of the
values found in self.Input. Of course, the class that you create can
output any string that fully represents the object.

 The main procedure creates two test objects, Value1 and Value2.
It adds them together and places the result in Value3. The result is
printed onscreen.

 3. Choose Run➪Run Module.

 Figure 14-13 shows the result of adding the two objects together, con-
verting them to strings, and then printing the result. It’s a lot of code for
such a simple output statement, but the result definitely demonstrates
that you can create classes that are self-contained and fully functional.

Figure 14-13:

The result of

adding two

MyClass

objects is a

third object

of the same

type.

Creating a Class
All the previous material in this chapter has helped prepare you for creat-
ing an interesting class of your own. In this case, you create a class that you
place into an external module and eventually access within an application.
Listing 14-1 shows the code that you need to create the class. This example
also appears with the downloadable source code as MyClass.py.

285 Chapter 14: Creating and Using Classes

Listing 14-1: Creating an External Class

class MyClass:
 def __init__(self, Name="Sam", Age=32):
 self.Name = Name
 self.Age = Age

 def GetName(self):
 return self.Name

 def SetName(self, Name):
 self.Name = Name

 def GetAge(self):
 return self.Age

 def SetAge(self, Age):
 self.Age = Age

 def __str__(self):
 return "{0} is aged {1}.".format(self.Name,
 self.Age)

In this case, the class begins by creating an object with two instance vari-
ables: Name and Age. If the user fails to provide these values, they default to
Sam and 32.

 This example provides you with a new class feature. Most developers call
this feature an accessor. Essentially, it provides access to an underlying value.
There are two types of accessors: getters and setters. Both GetName() and
GetAge() are getters. They provide read-only access to the underlying value.
The SetName() and SetAge() methods are setters, which provide write-
only access to the underlying value. Using a combination of methods like this
allows you to check inputs for correct type and range, as well as verify that
the caller has permission to view the information.

As with just about every other class you create, you need to define
the __str__() method if you want the user to be able to print the
object. In this case, the class provides formatted output that lists both
of the instance variables.

Using the Class in an Application
Most of the time, you use external classes when working with Python. It
isn’t very often that a class exists within the confines of the application file
because the application would become large and unmanageable. In addition,

286 Part III: Performing Common Tasks

reusing the class code in another application would be difficult. The follow-
ing steps help you use the MyClass class that you created in the previous
section. This example also appears with the downloadable source code as
MyClassTest.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after
each line:

import MyClass

SamsRecord = MyClass.MyClass()
AmysRecord = MyClass.MyClass("Amy", 44)

print(SamsRecord.GetAge())
SamsRecord.SetAge(33)

print(AmysRecord.GetName())
AmysRecord.SetName("Aimee")

print(SamsRecord)
print(AmysRecord)

 The example code begins by importing the MyClass module. The
module name is the name of the file used to store the external code, not
the name of the class. A single module can contain multiple classes, so
always think of the module as being the actual file that is used to hold
one or more classes that you need to use with your application.

 After the module is imported, the application creates two MyClass
objects. Notice that you use the module name first, followed by the
class name. The first object, SamsRecord, uses the default settings. The
second object, AmysRecord, relies on custom settings.

 Sam has become a year old. After the application verifies that the age
does need to be updated, it updates Sam’s age.

 Somehow, HR spelled Aimee’s name wrong. It turns out that Amy is an
incorrect spelling. Again, after the application verifies that the name is
wrong, it makes a correction to AmysRecord. The final step is to print
both records in their entirety.

 3. Choose Run➪Run Module.

 The application displays a series of messages as it puts MyClass through
its paces, as shown in Figure 14-14. At this point, you know all the essen-
tials of creating great classes.

287 Chapter 14: Creating and Using Classes

Figure 14-14:

The output

shows that

the class

is fully

functional.

Extending Classes to
Make New Classes

As you might imagine, creating a fully functional, production-grade class (one
that is used in a real-world application actually running on a system that is
accessed by users) is time consuming because real classes perform a lot of
tasks. Fortunately, Python supports a feature called inheritance. By using
inheritance, you can obtain the features you want from a parent class when
creating a child class. Overriding the features that you don’t need and adding
new features lets you create new classes relatively fast and with a lot less
effort on your part. In addition, because the parent code is already tested,
you don’t have to put quite as much effort into ensuring that your new class
works as expected. The following sections show how to build and use classes
that inherit from each other.

Building the child class
Parent classes are normally supersets of something. For example, you might
create a parent class named Car and then create child classes of various car
types around it. In this case, you build a parent class named Animal and
use it to define a child class named Chicken. Of course, you can easily add
other child classes after you have Animal in place, such as a Gorilla class.
However, for this example, you build just the one parent and one child class,
as shown in Listing 14-2. This example also appears with the downloadable
source code as Animals.py.

288 Part III: Performing Common Tasks

Listing 14-2: Building a Parent and Child Class

class Animal:
 def __init__(self, Name="", Age=0, Type=""):
 self.Name = Name
 self.Age = Age
 self.Type = Type

 def GetName(self):
 return self.Name

 def SetName(self, Name):
 self.Name = Name

 def GetAge(self):
 return self.Age

 def SetAge(self, Age):
 self.Age = Age

 def GetType(self):
 return self.Type

 def SetType(self, Type):
 self.Type = Type

 def __str__(self):
 return "{0} is a {1} aged {2}".format(self.Name,
 self.Type,
 self.Age)

class Chicken(Animal):
 def __init__(self, Name="", Age=0):
 self.Name = Name
 self.Age = Age
 self.Type = "Chicken"

 def SetType(self, Type):
 print("Sorry, {0} will always be a {1}"
 .format(self.Name, self.Type))

 def MakeSound(self):
 print("{0} says Cluck, Cluck,

Cluck!".format(self.Name))

289 Chapter 14: Creating and Using Classes

The Animal class tracks three characteristics: Name, Age, and Type. A produc-
tion application would probably track more characteristics, but these char-
acteristics do everything needed for this example. The code also includes the
required accessors for each of the characteristics. The __str__() method
completes the picture by printing a simple message stating the animal
characteristics.

The Chicken class inherits from the Animal class. Notice the use of Animal
in parentheses after the Chicken class name. This addition tells Python that
Chicken is a kind of Animal, something that will inherit the characteristics
of Animal.

Notice that the Chicken constructor accepts only Name and Age. The user
doesn’t have to supply a Type value because you already know that it’s a
chicken. This new constructor overrides the Animal constructor. The three
attributes are still in place, but Type is supplied directly in the Chicken
constructor.

Someone might try something funny, such as setting her chicken up as a
gorilla. With this in mind, the Chicken class also overrides the SetType()
setter. If someone tries to change the Chicken type, that user gets a message
rather than the attempted change. Normally, you handle this sort of problem
by using an exception, but the message works better for this example by
making the coding technique clearer.

Finally, the Chicken class adds a new feature, MakeSound(). Whenever
someone wants to hear the sound a chicken makes, he can call MakeSound()
to at least see it printed on the screen.

Testing the class in an application
Testing the Chicken class also tests the Animal class to some extent. Some
functionality is different, but some classes aren’t really meant to be used.
The Animal class is simply a parent for specific kinds of animals, such as
Chicken. The following steps demonstrate the Chicken class so that you
can see how inheritance works. This example also appears with the down-
loadable source code as ListStack.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

290 Part III: Performing Common Tasks

 2. Type the following code into the window — pressing Enter after
each line:

import Animals

MyChicken = Animals.Chicken("Sally", 2)
print(MyChicken)
MyChicken.SetAge(MyChicken.GetAge() + 1)
print(MyChicken)
MyChicken.SetType("Gorilla")
print(MyChicken)
MyChicken.MakeSound()

 The first step is to import the Animals module. Remember that you
always import the filename, not the class. The Animals.py file actually
contains two classes in this case: Animal and Chicken.

 The example creates a chicken, MyChicken, named Sally, who is age 2.
It then starts to work with MyChicken in various ways. For example,
Sally has a birthday, so the code updates Sally’s age by 1. Notice how the
code combines the use of a setter, SetAge(), with a getter, GetAge(),
to perform the task. After each change, the code displays the resulting
object values for you. The final step is to let Sally say a few words.

 3. Choose Run➪Run Module.

 You see each of the steps used to work with MyChicken, as shown in
Figure 14-15. As you can see, using inheritance can greatly simplify the
task of creating new classes when enough of the classes have commonal-
ity so that you can create a parent class that contains some amount of
the code.

Figure 14-15:

Sally has a

birthday and

then says a

few words.

